
iGCSE Computer Science – Topic 08: Data Structures English Name: ____________________

Introduction to Inheritance ©2025 Chris Nielsen – www.nielsenedu.com

Review of Why We Like Using Classes

Organizing code into classes provides encapsulation – bundling together a set of closely related data, along with
the methods that act on that data. For example a Vector class can keep together the coordinates associated with
a vector along with operations that one might perform on vectors such as addition, cross product, etc.

Classes also allow for abstraction – hiding the implementation details while providing a simple interface. When
working with the String class, we can simply get the upper case version of a string by calling the
toUpperCase method, without concern about how to implement such a method.

Inheritance for Code Re-Use

To understand what inheritance is and how it helps with code re-use, we will go through an example.

What do Students and Parents have in common?

This section relies on the fact that both a student and a parent is a type of person.

We wish to write some software that will keep a registry of students for a school. To start, we wish to keep track
of students and their parents. Each student will have a student number and name. Each parent will have a name
and contact information. Since we will store different information for students and parents, we decide to make one
object to represent students, and another to represent parents. Here is our initial UML diagram.

In our planning, we notice these two classes share some fields and methods. Both students and parents are people,
so will share attributes that people have. In our simple example, we have only one shared attribute, name, and two
associated methods, getName and setName. In more realistic cases, objects may share a number of attributes
and methods. Hopefully your teacher has drilled into your brain that, if at all possible, you should avoid having
multiple copies of the same code – always assume that there’s a better way.
Since students and parents are both people, perhaps we can try to make a single Person class and use it to store
both students and parents. Merging the two classes above, we come up with the following UML diagram.

Page 1 of 4

Student

–studentNum: int

–parent: Parent

+Student(num: int, name: String)
+Student(num: int, name: String
 parent: Parent)

–name: String

+setName(name: String)
+getName(): String

+setStudentNumber(number: int)
+getStudentNumber(): int

+setParent(parent: Parent)
+getParent(): Parent

+setParent(parent: Parent)
+getParent(): Parent

+toString(): String

Parent

+Parent(name: String
 contactInfo: String)

–name: String
–contactInfo: String

+setName(name: String)
+getName(): String

+setContactInfo(info: String)
+getContactInfo(): String

+toString(): String

–contactInfo: String

Person

–studentNum: int

–parent: Parent

+Person(name: String)

–name: String

+setName(name: String)
+getName(): String

+setStudentNumber(number: int)
+getStudentNumber(): int

+toString(): String

+setContactInfo(info: String)
+getContactInfo(): String

iGCSE Computer Science – Topic 08: Data Structures English Name: ____________________

Introduction to Inheritance ©2025 Chris Nielsen – www.nielsenedu.com

This new design is good in that we will not have duplicated code for saving and manipulating the name attribute.
However, this new design is wasteful. We will not use the studentNum or parent fields nor their associated
methods when we’re storing the data for parents, and we will not use the contactInfo field nor its associated
methods when we’re storing the data for students.
So now we can see the problem that inheritance solves. Look at the UML diagram below.

We have created a Person class. In this class, we have a field for name, and code for the methods associated
with it. The Student class and Parent class are subclasses of the Person class. Although the methods have
been listed in the subclasses in the UML diagram, subclasses inherit all the fields and methods of the Person
class, so that code does not need to be duplicated in the subclasses. We only need to implement the additional
methods in the subclasses that have not been implemented in the parent class.

Page 2 of 4

+setParent(parent: Parent)
+getParent(): Parent

–contactInfo: String

Person

–studentNum: int

–parent: Parent

+Person(name: String)

–name: String

+setName(name: String)
+getName(): String

+setStudentNumber(number: int)
+getStudentNumber(): int

+toString(): String

+setContactInfo(info: String)
+getContactInfo(): String

Student

–studentNum: int

–parent: Parent

+Student(num: int, name: String)
+Student(num: int, name: String
 parent: Parent)

–name: String

+setName(name: String)
+getName(): String

+setStudentNumber(number: int)
+getStudentNumber(): int

+toString(): String

Parent

+Parent(name: String
 contactInfo: String)

–name: String
–contactInfo: String

+setName(name: String)
+getName(): String

+setContactInfo(info: String)
+getContactInfo(): String

+toString(): String

Person

+Person(name: String)

–name: String

+setName(name: String)
+getName(): String

+toString(): String

+setParent(parent: Parent)
+getParent(): Parent

iGCSE Computer Science – Topic 08: Data Structures English Name: ____________________

Introduction to Inheritance ©2025 Chris Nielsen – www.nielsenedu.com

Implementing a superclass – a class that subclasses will inherit from – is no different from implementing any
other class; nothing in particular needs to be done to a class to allow other classes to inherit from it.

Every class we write in Java is implicitly a subclass of the Object class, which defines a few basic methods such
as toString and equals, and their default implementations, that we may want to override.

To implement a subclass, use the Java keyword extends, and we say the subclass extends the superclass. The
class declaration for the Parent class is as follows:

public class Parent extends Person

It should not be a surprise that the class declaration of the Student class also follows this pattern.

Subclass Constructors

Recall that if no constructor is declared for a class, the Java compiler will automatically provide a default
constructor that has no parameters and initializes the fields defined in the class. Although we did not mention it
previously, it also calls its parent class zero-parameter constructor. Thus if the parent class does not have a zero-
parameter constructor, the default constructor cannot be used, and a constructor must be explicitly declared.

To make this more clear, let us look at an example. Consider the following class diagram. In these diagrams, the
inherited methods are not included in the child (Textbook) class.

Textbook

+Textbook(title: String
 year: Integer
 subject: String)

–subject: String

+getSubject(): String

Book

+Book(title: String
 year: Integer)

–title: String
–year: Integer

+getYear(): Integer
+getTitle(): String

If the Textbook class were defined without a
constructor, the default constructor that would be
supplied by the compiler would be equivalent to the
code for the Default Zero-Parameter Textbook
Constructor to the right. In line 2 of this constructor,
the keyword super followed immediately by
parentheses is a call to the parent class constructor.

However, as we can see in the UML class diagram
above, the Book class (the parent class of
Textbook) does not have a zero-parameter
constructor. Thus, this default constructor will fail
compilation. To resolve this, we must declare an
explicit constructor for the Textbook class that
explicitly calls the Book class constructor, again
using the super keyword. This constructor might
look like the one given in the code box labeled
Parameterized Textbook Constructor.

Important note: the call to the super constructor must be the first statement of the constructor. If no call is
provided, the default zero-parameter constructor will be automatically called, and no call to a superclass
constructor can subsequently be made.

Notice that, according tot he UML diagram, the fields in the Book class have been declared as private. As you
have learned, private fields cannot be accessed outside of the defining class. If there is a case where a subclass
will need to modify a superclass field directly, but the field does not have a good reason to be accessible to other
classes, the field can be declared as protected. A protected field cannot be accessed outside the class by
any class that is not a subclass.

Page 3 of 4

Default Zero-Parameter Textbook Constructor

1
2
3
4

public Textbook() {
 super();
 this.subject = null;
}

Parameterized Textbook Constructor

1
2
3
4
5
6

public Textbook(String title,
 int year,
 String subject) {
 super(title, year);
 this.subject = subject;
}

iGCSE Computer Science – Topic 08: Data Structures English Name: ____________________

Introduction to Inheritance ©2025 Chris Nielsen – www.nielsenedu.com

Calling Instance Methods From the Superclass

Calling a static method that exists in a
superclass is no different than calling a
static method in any other class. We simply
use the class name, a period character (.),
then the method name. For example, if a
subclass were to extended the Math class and
needed to call the random method,
Math.random() would still be used in the
subclass.

In order to call an instance method in a
subclass, the super keyword is used. We will
re-use the example of a Textbook class and
its parent class Book from the previous
section. Examine the code for a toString
method for the Book class (above right). It
will print the book title on one line, and the
publication year on the following line.

For the Textbook class, we may wish to output the exact same information, but also add a line for the textbook
subject. Examine the code in the box labeled Textbook Class toString Method. The toString method of the
superclass (the Book class) is invoked with the code “super.toString()”.

Given this code, consider a textbook variable instantiated with the following line of code:

 Textbook myMathBook = new Textbook("Basic Algebra", 2025, "Mathematics");

A call to myMathBook.toString() would return the text:

Title: Basic Algebra
Year: 2025
Subject: Mathematics

Considering these past two sections, you should notice that the usage of the super keyword is very similar to the
usage of the this keyword. If the this keyword is followed immediately by parentheses, it is a call to the
constructor in the current class. If the super keyword is followed immediately by parentheses, it is a call to the
constructor in the superclass. If the this keyword is followed by a method name, it is a call to the method from
the current class. If the super keyword is followed by a method name, it is a call to the method from the
superclass.

What We Have Learned About Inheritance

Inheritance helps programmers leverage a hierarchy of types in order to avoid duplication of code. In the real
world, as well as in the example used above, both a Student is a type of Person and a Parent is a type of
Person. When we define the information that we need to associate with a Person (the fields) and the
functionality we implement to operate on a Person (the methods), the other subtypes can inherit that
information and functionality from the super class, rather than duplicate it.

There is said to be four pillars of object-oriented programming. So far we have discussed three of these:

• abstraction – hiding complexity

• encapsulation – bundling related information (fields) and operations (methods) together in one place

• inheritance – allowing extension of a class’ functionality

The final pillar is polymorphism – allowing objects to behave differently based on the object type. We will discuss
this in the next section.

Page 4 of 4

Book Class toString Method

1
2
3
4

@Override
public String toString() {
 return "Title: " + title + "\n" +
 "Year: " + year + "\n";
}

Textbook Class toString Method

1
2
3
4
5
6

@Override
public String toString() {
 return super.toString() +
 "Subject: " + subject + "\n";
}

